Science Junkie
NASA’s Plutonium Problem Could End Deep-Space Exploration
In 1977, the Voyager 1 spacecraft left Earth on a five-year mission to explore Jupiter and Saturn. Thirty-six years later, the car-size probe is still exploring, still sending its findings home. It has now put more than 19 billion kilometers between itself and the sun. Last week NASA announced that Voyager 1 had become the first man-made object to reach interstellar space.
The distance this craft has covered is almost incomprehensible. It’s so far away that it takes more than 17 hours for its signals to reach Earth. Along the way, Voyager 1 gave scientists their first close-up looks at Saturn, took the first images of Jupiter’s rings, discovered many of the moons circling those planets and revealed that Jupiter’s moon Io has active volcanoes. Now the spacecraft is discovering what the edge of the solar system is like, piercing the heliosheath where the last vestiges of the sun’s influence are felt and traversing the heliopause where cosmic currents overcome the solar wind. Voyager 1 is expected to keep working until 2025 when it will finally run out of power.
None of this would be possible without the spacecraft’s three batteries filled with plutonium-238. In fact, Most of what humanity knows about the outer planets came back to Earth on plutonium power. Cassini’s ongoing exploration of Saturn, Galileo’s trip to Jupiter, Curiosity’s exploration of the surface of Mars, and the 2015 flyby of Pluto by the New Horizons spacecraft are all fueled by the stuff. The characteristics of this metal’s radioactive decay make it a super-fuel. More importantly, there is no other viable option. Solar power is too weak, chemical batteries don’t last, nuclear fission systems are too heavy. So, we depend on plutonium-238, a fuel largely acquired as by-product of making nuclear weapons.
But there’s a problem: We’ve almost run out.
“We’ve got enough to last to the end of this decade. That’s it,” said Steve Johnson, a nuclear chemist at Idaho National Laboratory. And it’s not just the U.S. reserves that are in jeopardy. The entire planet’s stores are nearly depleted.
The country’s scientific stockpile has dwindled to around 36 pounds. To put that in perspective, the battery that powers NASA’s Curiosity rover, which is currently studying the surface of Mars, contains roughly 10 pounds of plutonium, and what’s left has already been spoken for and then some. The implications for space exploration are dire: No more plutonium-238 means not exploring perhaps 99 percent of the solar system. In effect, much of NASA’s $1.5 billion-a-year (and shrinking) planetary science program is running out of time. The nuclear crisis is so bad that affected researchers know it simply as “The Problem.”
But it doesn’t have to be that way. The required materials, reactors, and infrastructure are all in place to create plutonium-238. In fact, the U.S. government recently approved spending about $10 million a year to reconstitute production capabilities the nation shuttered almost two decades ago. In March, the DOE even produced a tiny amount of fresh plutonium inside a nuclear reactor in Tennessee.
It’s a good start, but the crisis is far from solved. Political ignorance and shortsighted squabbling, along with false promises from Russia, and penny-wise management of NASA’s ever-thinning budget still stand in the way of a robust plutonium-238 production system. The result: Meaningful exploration of the solar system has been pushed to a cliff’s edge. One ambitious space mission could deplete remaining plutonium stockpiles, and any hiccup in a future supply chain could undermine future missions.
Read more
Zoom Info
NASA’s Plutonium Problem Could End Deep-Space Exploration
In 1977, the Voyager 1 spacecraft left Earth on a five-year mission to explore Jupiter and Saturn. Thirty-six years later, the car-size probe is still exploring, still sending its findings home. It has now put more than 19 billion kilometers between itself and the sun. Last week NASA announced that Voyager 1 had become the first man-made object to reach interstellar space.
The distance this craft has covered is almost incomprehensible. It’s so far away that it takes more than 17 hours for its signals to reach Earth. Along the way, Voyager 1 gave scientists their first close-up looks at Saturn, took the first images of Jupiter’s rings, discovered many of the moons circling those planets and revealed that Jupiter’s moon Io has active volcanoes. Now the spacecraft is discovering what the edge of the solar system is like, piercing the heliosheath where the last vestiges of the sun’s influence are felt and traversing the heliopause where cosmic currents overcome the solar wind. Voyager 1 is expected to keep working until 2025 when it will finally run out of power.
None of this would be possible without the spacecraft’s three batteries filled with plutonium-238. In fact, Most of what humanity knows about the outer planets came back to Earth on plutonium power. Cassini’s ongoing exploration of Saturn, Galileo’s trip to Jupiter, Curiosity’s exploration of the surface of Mars, and the 2015 flyby of Pluto by the New Horizons spacecraft are all fueled by the stuff. The characteristics of this metal’s radioactive decay make it a super-fuel. More importantly, there is no other viable option. Solar power is too weak, chemical batteries don’t last, nuclear fission systems are too heavy. So, we depend on plutonium-238, a fuel largely acquired as by-product of making nuclear weapons.
But there’s a problem: We’ve almost run out.
“We’ve got enough to last to the end of this decade. That’s it,” said Steve Johnson, a nuclear chemist at Idaho National Laboratory. And it’s not just the U.S. reserves that are in jeopardy. The entire planet’s stores are nearly depleted.
The country’s scientific stockpile has dwindled to around 36 pounds. To put that in perspective, the battery that powers NASA’s Curiosity rover, which is currently studying the surface of Mars, contains roughly 10 pounds of plutonium, and what’s left has already been spoken for and then some. The implications for space exploration are dire: No more plutonium-238 means not exploring perhaps 99 percent of the solar system. In effect, much of NASA’s $1.5 billion-a-year (and shrinking) planetary science program is running out of time. The nuclear crisis is so bad that affected researchers know it simply as “The Problem.”
But it doesn’t have to be that way. The required materials, reactors, and infrastructure are all in place to create plutonium-238. In fact, the U.S. government recently approved spending about $10 million a year to reconstitute production capabilities the nation shuttered almost two decades ago. In March, the DOE even produced a tiny amount of fresh plutonium inside a nuclear reactor in Tennessee.
It’s a good start, but the crisis is far from solved. Political ignorance and shortsighted squabbling, along with false promises from Russia, and penny-wise management of NASA’s ever-thinning budget still stand in the way of a robust plutonium-238 production system. The result: Meaningful exploration of the solar system has been pushed to a cliff’s edge. One ambitious space mission could deplete remaining plutonium stockpiles, and any hiccup in a future supply chain could undermine future missions.
Read more
Zoom Info
NASA’s Plutonium Problem Could End Deep-Space Exploration
In 1977, the Voyager 1 spacecraft left Earth on a five-year mission to explore Jupiter and Saturn. Thirty-six years later, the car-size probe is still exploring, still sending its findings home. It has now put more than 19 billion kilometers between itself and the sun. Last week NASA announced that Voyager 1 had become the first man-made object to reach interstellar space.
The distance this craft has covered is almost incomprehensible. It’s so far away that it takes more than 17 hours for its signals to reach Earth. Along the way, Voyager 1 gave scientists their first close-up looks at Saturn, took the first images of Jupiter’s rings, discovered many of the moons circling those planets and revealed that Jupiter’s moon Io has active volcanoes. Now the spacecraft is discovering what the edge of the solar system is like, piercing the heliosheath where the last vestiges of the sun’s influence are felt and traversing the heliopause where cosmic currents overcome the solar wind. Voyager 1 is expected to keep working until 2025 when it will finally run out of power.
None of this would be possible without the spacecraft’s three batteries filled with plutonium-238. In fact, Most of what humanity knows about the outer planets came back to Earth on plutonium power. Cassini’s ongoing exploration of Saturn, Galileo’s trip to Jupiter, Curiosity’s exploration of the surface of Mars, and the 2015 flyby of Pluto by the New Horizons spacecraft are all fueled by the stuff. The characteristics of this metal’s radioactive decay make it a super-fuel. More importantly, there is no other viable option. Solar power is too weak, chemical batteries don’t last, nuclear fission systems are too heavy. So, we depend on plutonium-238, a fuel largely acquired as by-product of making nuclear weapons.
But there’s a problem: We’ve almost run out.
“We’ve got enough to last to the end of this decade. That’s it,” said Steve Johnson, a nuclear chemist at Idaho National Laboratory. And it’s not just the U.S. reserves that are in jeopardy. The entire planet’s stores are nearly depleted.
The country’s scientific stockpile has dwindled to around 36 pounds. To put that in perspective, the battery that powers NASA’s Curiosity rover, which is currently studying the surface of Mars, contains roughly 10 pounds of plutonium, and what’s left has already been spoken for and then some. The implications for space exploration are dire: No more plutonium-238 means not exploring perhaps 99 percent of the solar system. In effect, much of NASA’s $1.5 billion-a-year (and shrinking) planetary science program is running out of time. The nuclear crisis is so bad that affected researchers know it simply as “The Problem.”
But it doesn’t have to be that way. The required materials, reactors, and infrastructure are all in place to create plutonium-238. In fact, the U.S. government recently approved spending about $10 million a year to reconstitute production capabilities the nation shuttered almost two decades ago. In March, the DOE even produced a tiny amount of fresh plutonium inside a nuclear reactor in Tennessee.
It’s a good start, but the crisis is far from solved. Political ignorance and shortsighted squabbling, along with false promises from Russia, and penny-wise management of NASA’s ever-thinning budget still stand in the way of a robust plutonium-238 production system. The result: Meaningful exploration of the solar system has been pushed to a cliff’s edge. One ambitious space mission could deplete remaining plutonium stockpiles, and any hiccup in a future supply chain could undermine future missions.
Read more
Zoom Info

NASA’s Plutonium Problem Could End Deep-Space Exploration

In 1977, the Voyager 1 spacecraft left Earth on a five-year mission to explore Jupiter and Saturn. Thirty-six years later, the car-size probe is still exploring, still sending its findings home. It has now put more than 19 billion kilometers between itself and the sun. Last week NASA announced that Voyager 1 had become the first man-made object to reach interstellar space.

The distance this craft has covered is almost incomprehensible. It’s so far away that it takes more than 17 hours for its signals to reach Earth. Along the way, Voyager 1 gave scientists their first close-up looks at Saturn, took the first images of Jupiter’s rings, discovered many of the moons circling those planets and revealed that Jupiter’s moon Io has active volcanoes. Now the spacecraft is discovering what the edge of the solar system is like, piercing the heliosheath where the last vestiges of the sun’s influence are felt and traversing the heliopause where cosmic currents overcome the solar wind. Voyager 1 is expected to keep working until 2025 when it will finally run out of power.

None of this would be possible without the spacecraft’s three batteries filled with plutonium-238. In fact, Most of what humanity knows about the outer planets came back to Earth on plutonium power. Cassini’s ongoing exploration of Saturn, Galileo’s trip to Jupiter, Curiosity’s exploration of the surface of Mars, and the 2015 flyby of Pluto by the New Horizons spacecraft are all fueled by the stuff. The characteristics of this metal’s radioactive decay make it a super-fuel. More importantly, there is no other viable option. Solar power is too weak, chemical batteries don’t last, nuclear fission systems are too heavy. So, we depend on plutonium-238, a fuel largely acquired as by-product of making nuclear weapons.

But there’s a problem: We’ve almost run out.

“We’ve got enough to last to the end of this decade. That’s it,” said Steve Johnson, a nuclear chemist at Idaho National Laboratory. And it’s not just the U.S. reserves that are in jeopardy. The entire planet’s stores are nearly depleted.

The country’s scientific stockpile has dwindled to around 36 pounds. To put that in perspective, the battery that powers NASA’s Curiosity rover, which is currently studying the surface of Mars, contains roughly 10 pounds of plutonium, and what’s left has already been spoken for and then some. The implications for space exploration are dire: No more plutonium-238 means not exploring perhaps 99 percent of the solar system. In effect, much of NASA’s $1.5 billion-a-year (and shrinking) planetary science program is running out of time. The nuclear crisis is so bad that affected researchers know it simply as “The Problem.”

But it doesn’t have to be that way. The required materials, reactors, and infrastructure are all in place to create plutonium-238. In fact, the U.S. government recently approved spending about $10 million a year to reconstitute production capabilities the nation shuttered almost two decades ago. In March, the DOE even produced a tiny amount of fresh plutonium inside a nuclear reactor in Tennessee.

It’s a good start, but the crisis is far from solved. Political ignorance and shortsighted squabbling, along with false promises from Russia, and penny-wise management of NASA’s ever-thinning budget still stand in the way of a robust plutonium-238 production system. The result: Meaningful exploration of the solar system has been pushed to a cliff’s edge. One ambitious space mission could deplete remaining plutonium stockpiles, and any hiccup in a future supply chain could undermine future missions.

Read more







  1. spookypetsmart reblogged this from sagansense
  2. ilovechernobyl reblogged this from science-junkie
  3. ownerchristophe reblogged this from timothy-the-tetra
  4. oceansateclocks reblogged this from science-junkie
  5. artiste9999 reblogged this from science-junkie
  6. notosmothi reblogged this from dinasaursonaspaceship
  7. dinasaursonaspaceship reblogged this from tmbird
  8. tmbird reblogged this from science-junkie
  9. specialk2010 reblogged this from sagansense
  10. tennyowithaluger reblogged this from die-kameraden
  11. pagz9 reblogged this from untitledrubbish
  12. what-a-succulent-ass reblogged this from sagansense
  13. sofvonpace reblogged this from science-junkie
  14. die-kameraden reblogged this from stainedclass1
  15. untitledrubbish reblogged this from science-junkie
  16. alabasterthecrimsonfurymccarty reblogged this from the-nuclear-chaos
  17. bardofmind reblogged this from fudgesmonkey
  18. fudgesmonkey reblogged this from sagansense
  19. stainedclass1 reblogged this from sagansense
  20. condomofhate reblogged this from sagansense
  21. the-nuclear-chaos reblogged this from sagansense
  22. tune-notes reblogged this from sagansense
  23. sagansense reblogged this from astronomy-picture-of-the-day and added:
    via science-junkie
  24. usscanada reblogged this from science-junkie