Science Junkie
Beautiful ‘flowers’ self-assemble in a beaker
With the hand of nature trained on a beaker of chemical fluid, the most delicate flower structures have been formed in a Harvard laboratory—and not at the scale of inches, but microns.
These minuscule sculptures, curved and delicate, don’t resemble the cubic or jagged forms normally associated with crystals, though that’s what they are. Rather, fields of carnations and marigolds seem to bloom from the surface of a submerged glass slide, assembling themselves a molecule at a time.
By simply manipulating chemical gradients in a beaker of fluid, Wim L. Noorduin, a postdoctoral fellow at the Harvard School of Engineering and Applied Sciences (SEAS) and lead author of a paper appearing on the cover of the May 17 issue of Science, has found that he can control the growth behavior of these crystals to create precisely tailored structures.
"For at least 200 years, people have been intrigued by how complex shapes could have evolved in nature. This work helps to demonstrate what’s possible just through environmental, chemical changes," says Noorduin.
Read more
Images: [x]
Zoom Info
Beautiful ‘flowers’ self-assemble in a beaker
With the hand of nature trained on a beaker of chemical fluid, the most delicate flower structures have been formed in a Harvard laboratory—and not at the scale of inches, but microns.
These minuscule sculptures, curved and delicate, don’t resemble the cubic or jagged forms normally associated with crystals, though that’s what they are. Rather, fields of carnations and marigolds seem to bloom from the surface of a submerged glass slide, assembling themselves a molecule at a time.
By simply manipulating chemical gradients in a beaker of fluid, Wim L. Noorduin, a postdoctoral fellow at the Harvard School of Engineering and Applied Sciences (SEAS) and lead author of a paper appearing on the cover of the May 17 issue of Science, has found that he can control the growth behavior of these crystals to create precisely tailored structures.
"For at least 200 years, people have been intrigued by how complex shapes could have evolved in nature. This work helps to demonstrate what’s possible just through environmental, chemical changes," says Noorduin.
Read more
Images: [x]
Zoom Info
Beautiful ‘flowers’ self-assemble in a beaker
With the hand of nature trained on a beaker of chemical fluid, the most delicate flower structures have been formed in a Harvard laboratory—and not at the scale of inches, but microns.
These minuscule sculptures, curved and delicate, don’t resemble the cubic or jagged forms normally associated with crystals, though that’s what they are. Rather, fields of carnations and marigolds seem to bloom from the surface of a submerged glass slide, assembling themselves a molecule at a time.
By simply manipulating chemical gradients in a beaker of fluid, Wim L. Noorduin, a postdoctoral fellow at the Harvard School of Engineering and Applied Sciences (SEAS) and lead author of a paper appearing on the cover of the May 17 issue of Science, has found that he can control the growth behavior of these crystals to create precisely tailored structures.
"For at least 200 years, people have been intrigued by how complex shapes could have evolved in nature. This work helps to demonstrate what’s possible just through environmental, chemical changes," says Noorduin.
Read more
Images: [x]
Zoom Info
Beautiful ‘flowers’ self-assemble in a beaker
With the hand of nature trained on a beaker of chemical fluid, the most delicate flower structures have been formed in a Harvard laboratory—and not at the scale of inches, but microns.
These minuscule sculptures, curved and delicate, don’t resemble the cubic or jagged forms normally associated with crystals, though that’s what they are. Rather, fields of carnations and marigolds seem to bloom from the surface of a submerged glass slide, assembling themselves a molecule at a time.
By simply manipulating chemical gradients in a beaker of fluid, Wim L. Noorduin, a postdoctoral fellow at the Harvard School of Engineering and Applied Sciences (SEAS) and lead author of a paper appearing on the cover of the May 17 issue of Science, has found that he can control the growth behavior of these crystals to create precisely tailored structures.
"For at least 200 years, people have been intrigued by how complex shapes could have evolved in nature. This work helps to demonstrate what’s possible just through environmental, chemical changes," says Noorduin.
Read more
Images: [x]
Zoom Info

Beautiful ‘flowers’ self-assemble in a beaker

With the hand of nature trained on a beaker of chemical fluid, the most delicate flower structures have been formed in a Harvard laboratory—and not at the scale of inches, but microns.

These minuscule sculptures, curved and delicate, don’t resemble the cubic or jagged forms normally associated with crystals, though that’s what they are. Rather, fields of carnations and marigolds seem to bloom from the surface of a submerged glass slide, assembling themselves a molecule at a time.

By simply manipulating chemical gradients in a beaker of fluid, Wim L. Noorduin, a postdoctoral fellow at the Harvard School of Engineering and Applied Sciences (SEAS) and lead author of a paper appearing on the cover of the May 17 issue of Science, has found that he can control the growth behavior of these crystals to create precisely tailored structures.

"For at least 200 years, people have been intrigued by how complex shapes could have evolved in nature. This work helps to demonstrate what’s possible just through environmental, chemical changes," says Noorduin.

Read more

Images: [x]







  1. lila-scientifique-tortue-de-mer reblogged this from mullercells
  2. mullercells reblogged this from science-junkie
  3. waminatorphd reblogged this from science-junkie
  4. tanukissus reblogged this from science-junkie and added:
    Fake flora? after the big bang UhihHuhu
  5. eveofallhallows reblogged this from science-junkie
  6. terexatto reblogged this from science-junkie
  7. cantfindforever reblogged this from ganhinhinchemistry
  8. therealconcept reblogged this from science-junkie and added:
    The Power of NanoTechnology
  9. novaward reblogged this from science-junkie
  10. deadbirdlife reblogged this from phyteclub
  11. viscountessbranksome reblogged this from science-junkie
  12. mr-mushroom reblogged this from phyteclub
  13. osmanthusoolong reblogged this from phyteclub
  14. phyteclub reblogged this from cornerof5thandvermouth
  15. mariams71 reblogged this from science-junkie
  16. llamasonunicycles reblogged this from the-science-llama
  17. owoddity reblogged this from cornerof5thandvermouth
  18. obviouslycloe reblogged this from nylorac15
  19. nylorac15 reblogged this from cornerof5thandvermouth
  20. cornerof5thandvermouth reblogged this from haectemporasunt
  21. ignis-ut-aspice reblogged this from science-junkie
  22. gemws reblogged this from science-junkie
  23. radtasticrawr reblogged this from madamemaybe
  24. everyoneisaworldapart reblogged this from science-junkie
  25. sweatshirtdemon reblogged this from arcay9