Science Junkie
"Evolution of Oxygen" —New Theories of Key Event 2.3 Billion Years Ago.
The Great Oxidation Event occured around 2.3 billion years ago, when it was no longer possible for newly created oxygen to be captured in chemical compounds. Instead, it started to accumulate as oxygen in the oceans and in the atmosphere. Before this event, in the Earth’s early atmosphere, there were only traces of free oxygen. All life was based exclusively on anaerobic processes - chemical reactions that did not require oxygen. With the emergence of cyanobacteria that oxidized water with the help of light and produced oxygen as a by-product, the conditions for life on Earth gradually began to transform.New research by scientists at the University of Bristol and Boston University suggests that the evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Cyanobacteria are among the most diverse prokaryotic phyla, with morphotypes ranging from unicellular to multicellular filamentous forms, including those able to irreversibly differentiate in form and function. It has been suggested that cyanobacteria raised oxygen levels in the atmosphere around 2.45–2.32 billion years ago during the Great Oxidation Event and dramatically changing life on the planet. However, little is known about the possible interplay between the origin of multicellularity, diversification of cyanobacteria, and the rise of atmospheric oxygen.The team tested whether the evolution of multicellularity overlapped with the Great Oxidation, and whether multicellularity is associated with significant shifts in diversification rates in cyanobacteria. Our results indicate an origin of cyanobacteria before the rise of atmospheric oxygen. The evolution of multicellular forms coincided with the onset of the Great Oxidation Event and an increase in diversification rates, suggesting that multicellularity could have played a key role in triggering cyanobacterial evolution.

Read moreImages: 1 - 2.
Zoom Info
"Evolution of Oxygen" —New Theories of Key Event 2.3 Billion Years Ago.
The Great Oxidation Event occured around 2.3 billion years ago, when it was no longer possible for newly created oxygen to be captured in chemical compounds. Instead, it started to accumulate as oxygen in the oceans and in the atmosphere. Before this event, in the Earth’s early atmosphere, there were only traces of free oxygen. All life was based exclusively on anaerobic processes - chemical reactions that did not require oxygen. With the emergence of cyanobacteria that oxidized water with the help of light and produced oxygen as a by-product, the conditions for life on Earth gradually began to transform.New research by scientists at the University of Bristol and Boston University suggests that the evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Cyanobacteria are among the most diverse prokaryotic phyla, with morphotypes ranging from unicellular to multicellular filamentous forms, including those able to irreversibly differentiate in form and function. It has been suggested that cyanobacteria raised oxygen levels in the atmosphere around 2.45–2.32 billion years ago during the Great Oxidation Event and dramatically changing life on the planet. However, little is known about the possible interplay between the origin of multicellularity, diversification of cyanobacteria, and the rise of atmospheric oxygen.The team tested whether the evolution of multicellularity overlapped with the Great Oxidation, and whether multicellularity is associated with significant shifts in diversification rates in cyanobacteria. Our results indicate an origin of cyanobacteria before the rise of atmospheric oxygen. The evolution of multicellular forms coincided with the onset of the Great Oxidation Event and an increase in diversification rates, suggesting that multicellularity could have played a key role in triggering cyanobacterial evolution.

Read moreImages: 1 - 2.
Zoom Info

"Evolution of Oxygen" —New Theories of Key Event 2.3 Billion Years Ago.

The Great Oxidation Event occured around 2.3 billion years ago, when it was no longer possible for newly created oxygen to be captured in chemical compounds. Instead, it started to accumulate as oxygen in the oceans and in the atmosphere. Before this event, in the Earth’s early atmosphere, there were only traces of free oxygen. All life was based exclusively on anaerobic processes - chemical reactions that did not require oxygen. With the emergence of cyanobacteria that oxidized water with the help of light and produced oxygen as a by-product, the conditions for life on Earth gradually began to transform.

New research by scientists at the University of Bristol and Boston University suggests that the evolution of multicellularity coincided with increased diversification of cyanobacteria and the Great Oxidation Event. Cyanobacteria are among the most diverse prokaryotic phyla, with morphotypes ranging from unicellular to multicellular filamentous forms, including those able to irreversibly differentiate in form and function. It has been suggested that cyanobacteria raised oxygen levels in the atmosphere around 2.45–2.32 billion years ago during the Great Oxidation Event and dramatically changing life on the planet. However, little is known about the possible interplay between the origin of multicellularity, diversification of cyanobacteria, and the rise of atmospheric oxygen.

The team tested whether the evolution of multicellularity overlapped with the Great Oxidation, and whether multicellularity is associated with significant shifts in diversification rates in cyanobacteria. Our results indicate an origin of cyanobacteria before the rise of atmospheric oxygen. The evolution of multicellular forms coincided with the onset of the Great Oxidation Event and an increase in diversification rates, suggesting that multicellularity could have played a key role in triggering cyanobacterial evolution.

Read more


Images: 1 - 2.






  1. designdrift reblogged this from science-junkie
  2. healing-hypoxia reblogged this from science-junkie
  3. mermaid-sushi reblogged this from queerheretic
  4. sbcompendium reblogged this from science-junkie
  5. something-coool reblogged this from science-junkie
  6. zoo-my-god reblogged this from science-junkie
  7. hazy-cosmic-jive reblogged this from science-junkie
  8. eternalacademic reblogged this from somuchscience
  9. huevoduro93 reblogged this from halloweenramble
  10. halloweenramble reblogged this from somuchscience
  11. fuckyeaawkwardness reblogged this from somuchscience
  12. somuchscience reblogged this from science-junkie
  13. nopejuststop reblogged this from eurogreecian
  14. eurogreecian reblogged this from xanthocomically
  15. gmdavies reblogged this from science-junkie
  16. alineazure reblogged this from science-junkie and added:
    WOW (0_0) So… They are produce oxygen :’D
  17. ascendant7 reblogged this from science-junkie
  18. swayingamethyst reblogged this from science-junkie
  19. butterskissingcompany reblogged this from science-junkie
  20. archaean reblogged this from molecularlifesciences
  21. paradoxknight reblogged this from science-junkie
  22. thecraftychemist reblogged this from xanthocomically